
www.manaraa.com

PROGRAMMING EDUCATION WITH A BLOCKS-BASED

VISUAL LANGUAGE FOR MOBILE APPLICATION

DEVELOPMENT

Can Mihci* and Assoc. Prof. Nesrin Ozdener**
*Marmara University Institute of Educational Sciences

**Marmara University Ataturk Faculty of Education Department of CEIT

ABSTRACT

The aim of this study is to assess the impact upon academic success of the use of a reference block-based visual
programming tool, namely the MIT App Inventor for Android, as an educational instrument for teaching object-oriented
GUI-application development (CS2) concepts to students; who have previously completed a fundamental programming
course that involved education of structured programming concepts using C# (CS1). It has also been studied whether
impacts upon CS2 success of factors such as previous success in CS1 and prior high school experience in programming,
have a relationship with the impact upon CS2 success from the use of the blocks-based instructional tool. The research;
which has a post-test only quasi-experimental design; has a sample comprised of 101 Undergraduate students who are
taking up the CS2 course at a Department of Computer Education and Instructional Technologies (CEIT).

KEYWORDS

Programming education, app inventor, programming paradigms, mobile application development, programming blocks

1. INTRODUCTION

Although programming education is vital to the development of many industries and a highly popular subject
in many curriculums of today’s academic institutions, it is a known fact that it poses great difficulties to

novice students who most often fail to achieve desired results at introductory levels of it (Kinnunen and
Malmi,2008;Özdener,2008; Mccracken et al., 2001; Soloway, Ehrlich, Bonar and Greenspan 1983). The fact
that average academic success in worldwide programming education is below desired levels, shows us that
programming education has its own exclusive challenges. According to Robins, Rountree and Rountree
(2003), students need to possess high-levels of cognitive skills for overcoming the said challenges and also,
lecturers need to use appropriate teaching strategies.

Papert, who has extensively studied on how to teach programming more effectively; has created the
Constructionist learning theory, which is based on Piaget’s idea of “learners intrinsically constructing
knowledge” and which suggests that the most effective method for learning is through the construction of

personally meaningful concrete artifacts with a social aspect to them (Papert and Harel 1991). This theory
has led to creation of the blocks-based visual programming languages to be used in programming education
in order to make things simpler and more personal for students; although the initial idea was to be employ
these for offering easier-to-use tools to end-user developers (Mohamad, Patel et al. 2011).

As previously mentioned, although block-based visual programming languages are thought to designed
for the benefit of end-user developers (Mohamad, Patel et al. 2011), several studies also propose similar
approaches, for example, with physical real-world blocks, as programming education tools for small children
(Wyeth and Purchase 2000). Other studies have discussed the effect of education with tangible blocks
increasing interest and success in programming in children (McNerney 2004, Horn and Jacob 2006), and
although positive results with the use of block-based tools in programming education have occasionally been
reported (Horn and Jacob 2007, Wang, Zhang et al. 2011), it is thought that there is a need for further
experimental studies that display concrete results.

10th International Conference Mobile Learning 2014

149

www.manaraa.com

Another approach that has seen recent use for increasing the motivation of students towards programming
education is the use of smart mobile devices in programming education. Smart mobile devices are becoming
vastly popular; in that, as of the year 2011, there is at least one software application in the mobile phone of
every other American citizen (Purcell 2011). Considering the high usage ratios and the popularity among the
young generation of smart mobile devices, it can be expected that educational applications that target these
platforms should gain interest from students (Rau, Gao et al. 2008).

According to Dvorak and Buchanan, students allocate more time to study for lessons that are taught with
new tools (Dvorak and Buchanan 2002). And perhaps for this reason, Mahmoud and Dyer have proposed in
their teaching model -which has been fashioned in parallel with their study conducted at Guelph University-
to give programming education to students by using BlackBerry branded smartphone devices (Mahmoud
and Dyer 2007). However, there is no experimental data that shows how using this smart device as an
educational tool for teaching programming would affect student success. Tillmann et al. Have also proposed
a system in which students would get all the programming education entirely over smart mobile devices, and
although they have not tested the use of this system, they have claimed that the future of programming
education lies in “mobile programming” (Tillmann, Moskal et al. 2012). Again, in this context, Kurkovsky
and Bhagi have each run separate studies that aimed to teach students programming through game
development for mobile platforms and they have both emphasized the positive student motivation that has
been observed. However, both studies have not made it clear the level of success achieved by students in
programming education, especially as compared to conventional syntax-based approaches (Kurkovsky 2009,
Bhagi 2012). Another unanswered question is whether the use of mobile devices would affect all students
the same way. All in all, a review of current literature shows that, although use of smart mobile devices as
educational tools for increasing student motivation in programming classes has already been discussed, there
is need for further experimental research in this matter.

A project developed by Google Inc. for enabling end-users to develop their own apps on the Android
mobile operating system (although later discontinued and adopted by the MIT Media Lab), the App Inventor
for Android (AIA) is a blocks-based visual programming language (BBVPL) that has achieved popularity in
the recent years. With its potentially promising source for student motivation by enabling development of
personally meaningful mobile apps on student-owned devices; and an easy to understand blocks-based visual
programming approach, App Inventor soon made researchers think that it could prove to be a valuable tool in
programming education. As such, it has been proposed that this blocks-based app development tool for
mobile platforms could be used in programming education by Karakus and his colleagues (Karakus, Uludag
et al. 2012) and it has been also claimed by Wolber that it is a useful tool for increasing student motivation
towards programming classes (Wolber 2011). It could therefore be beneficial to determine experimentally
whether the use of MIT App Inventor for Android would have a positive impact upon student success in
programming education. Particularly, this study proposes the use of MIT App Inventor for Android as a
transitional tool from the console based procedural approach stage in programming education to the object-
oriented GUI-application development stage. As opposed to most previous research with App Inventor, all
the participants in the study have prior experience in programming both at a CS1 course where they received
the console based procedural programming education, with some of the participants having even more, pre-
university programming experience whom they mostly received at vocational high schools.

2. PURPOSE

The aim of this study is to investigate the effects of using a blocks-based visual programming language for
app development in mobile platforms as an educational tool for teaching programming at the object oriented
GUI-application development (will be referred to as CS2 from now on) phase upon the academic success of
undergraduate students. Additionally, it has been investigated whether there is an interaction between effects
from factors that influence object oriented GUI-application development related academic success, such as
previous success level at a prior university programming course that involves fundamental education in
structured programming concepts (will be referred to as CS1 from now on) and high-school experience in
programming prior to university education (if any) upon student success; and the effect from the tool that has
been used. In this context, the following hypotheses have been tested:

ISBN: 978-989-8704-02-3 © 2014 IADIS

150

www.manaraa.com

 The average post-test results of the experimental group, who used the Blocks-Based Visual Programming
Language (will be referred to as BBVPL from now on) will be significantly greater than that of the
control group who used a conventional syntax-based object-oriented programming language (will be
referred to as SBL from now on) for desktop application development (Hypothesis 1).

 A factorial analysis of variance shall reveal a significant three-way interaction between the effects of the
following factors upon academic success of students in object oriented GUI-application development: the
factor of educational tool employed (BBVPL / SBL), the factor of high school experience in
programming education, (experienced/inexperienced) and the factor of previous success at the CS1
university course (successful/unsuccessful) (Hypothesis 2).

 A comparison of average academic success between the so-called “novice” sub-groups, which have been
determined as students who lack high-school programming experience and who have been previously
unsuccessful at CS1 course, shall reveal a significant difference in favor of the sub-group that has used
the BBVPL against the sub-group that used SBL (Hypothesis 3).

3. METHODOLOGY

3.1 Research Design and Sample

The study follows a posttest only quasi experimental design. Pre-tests have been used however, to control for
groups equivalency. The study sample is comprised of 101 2nd year undergraduate students at the
Department of Computer Education and Instructional Technology, who have taken up at the previous
semester the CS1 course, which involves teaching programming basics through the structured /procedural
programming paradigm and by the development of console applications for the desktop PC using .NET (C#)
language. The students belong to two groups, namely the daytime education and evening education; which
have been randomly assigned as the experimental and control groups for the research. The software
application development projects undertaken throughout the CS2 course have been taught by using a
reference Blocks-Based Visual Programming Language for Mobile Application Development (BBVPL),
namely the MIT App Inventor for Android, in the experimental group; whereas projects in the control group
have been developed as Windows-Form applications on Microsoft Visual Studio 2010, using .NET (C#). The
course was continued for 5 weeks and it was ensured that projects, learning outputs and weekly course
content for both groups are identical, with the only difference in both groups being the educational tool (the
programming language) used.

3.2 Data Collection Instruments

Pretest 1: Developed by Osman Ay (Ay, 2011), this is a test that measures knowledge of console-based
procedural programming concepts in the C# language, which has an item internal consistency coefficient
(Cronbach’s Alpha) of 0,67. Using this test, the knowledge of students in the structured/procedural
programming concepts, which they have learned throughout the CS1 course, has been measured and it was
made sure that the experimental and control groups are equivalent in this sense.
Prior Programming Experience Form: This form was used in order to gather data from students pertaining
to the type of high schools they have graduated from and the context of programming education they have
received in high school (if any).
Pretest 2: Developed by the researchers, this test measures knowledge in Object-Oriented GUI Application
Development concepts of programming education and has been used to verify the consistency of student
declarations in “Prior Programming Experience Form”. The test, which contains 13 items; has an item
internal consistency coefficient (Cronbach’s Alpha) of 0,94. As a result of this test, students have been
allocated to “Prior experience in GUI-application development” nominal factor groups as

experienced/inexperienced.
Post-test: This test has been used to at the end of the research application, for the purpose of comparing
academic success of students in experimental and control groups in regards to education on object-oriented
GUI-application development. The test, which consists of 20 items, has been implemented as an applied

10th International Conference Mobile Learning 2014

151

www.manaraa.com

examination in a computer laboratory. Students in the experimental and control groups have been asked to
use relevant tools, with which they have received the CS2 education (MIT App Inventor for the experimental
group and Microsoft Visual Studio 2010 for the control group), for answering the test questions. Cronbach’s

Alpha value for the test, which was developed by the researchers, has been found to be 0,865.

4. FINDINGS

4.1 Testing for Equivalency in Groups

In order to determine whether study groups are equivalent in terms of resuls from Pretest 1 and Pretest 2; it
was initially made sure that results from all sub-groups for each test are normally distributed. Following this,
an independent samples T-test (p=0,900) for equivalency in Pretest 1, where results are normally distributed;
and a Mann-Whitney U test (p = 0,737) for equivalency in Pretest 2, where results are not normally
distributed; have been carried out. Both tests have shown that there is no significant difference between
experimental and control groups in terms of Pretest 1 and Pretest 2 scores.

4.2 CS2 Success of Groups Depending on the Instructional Tool Used

(Hypothesis 1)

The post-test scores of the experimental and control groups have been compared with an independent
samples T-test and the results have been given in Table 1. According to statistical test results, average scores
in the post-test, which measures object-oriented GUI-application development skills, are significantly
different in the experimental and control groups (t(74)=2,201, p<0,05), with the control group having the
higher average. Hypothesis 1 is therefore rejected.

Table 1. T-test results showing difference in score averages between groups depending on the instructional tool used.
(Experimental group: MIT App Inventor; Control group: Visual Studio 2010)

Group N X S df t P
Control 34 47,50 25,71 74 2,201 .031
Experimental 42 36,66 17,02

4.3 Creation of Factor Groups

Students who fall below average in Pretest 1 scores at a range of standard deviation multiplied by 0.3 have
been grouped as “unsuccessful”, whereas students who fall above average in Pretest 1 scores at a range of

standard deviation multiplied by 0.3 have been grouped as “successful” to determine the factor groups for
CS1 success

Prior programming experience that students have earned during high-school education has been
uncovered with the “prior programming experience form”. According to data acquired through this form, it

was found that not only did some of the students in the research sample have had programming experience in
high school, but also a portion of this experience involved education in object-oriented GUI-application
development. Therefore, Pretest 2 has been administered to students in both experimental and control groups
to measure knowledge in object-oriented GUI-application development concepts. Students who were below
average were allocated into the “inexperienced” and students above average wer allocated into the

“experienced” groups for the Factor of Prior High School Education in GUI-App Development. In order to
ensure the consistency of this allocation to groups, a chi-square test has been carried out between this
nominal grouping and the declarations of students at the prior programming experience form on receiving
GUI Application Development course during high school. The chi-square test yielded a result (sd=1, p=0.00)
showing the grouping was consistent with student declarations. In this context, the data in Table 2 pertaining
to programming education at high school have been gathered.

ISBN: 978-989-8704-02-3 © 2014 IADIS

152

www.manaraa.com

Table 2. Students’ prior programming education from high school

Type of High School

(Received

Programming Edu. ?)

Received

GUI App Dev.

Education?

Was successful in

Pretest 2?

Group
Total

Students

Vocational

(Yes)

Regular

(No)
Yes No Yes No

Control 47 38 9 28 10 17 11
Experimental 54 41 13 31 10 23 8

Total 101 79 22 59 20 40 19

4.4 Relationship between Effects of Factors upon CS2 Success (Hypothesis 2)

A 2x2x2 three-way analysis of variance statistical test has been carried out to determine the main factor
effects upon CS2 success and the nature of relationships between these effects. The factors that have been
taken into account are: a) the instructional tool (BBVPL / SBL), b) success at the CS1 course
(Successful/Unsuccessful) and c) High-School Experience in GUI-Application Development
(Experienced/inexperienced). The chart detailing tests of between-subject effects for the analysis has given in
Table 3. According to analysis results, no three-way interaction between effects of the factors upon CS2
success has been found (F(1,65) = .440, p = .509). On the other hand, there is a significant two-way
relationship between factors of instructional tool and high-school experience in GUI-application development
(F(1,65) = 7,010, p = .010). Additionally, main effects upon CS2 success for each factor, namely the
instructional tool (F(1,65) = 6,349, p = .014), high school experience in GUI-application development
(F(1,65) = 10,435 p = .02) and success at the CS1 course (F(1,65) = 8,147 p = .006) have been found to be
statistically significant.

Table 3. 3-way Analysis of Variance Tests of Between Subject Effects detailing the effects upon CS2 success the factors
of instructional tool, CS1 success and high-school experience in GUI-App development

Source of Variance Sum of
Squares

df Mean
Square

F (p)

Tool 2026,120 1 2026,120 6,349 ,014
CS1 Success 2600,003 1 2600,003 8,147 ,006
High Sch. Exp. in GUI App Dev. 3330,078 1 3330,078 10,435 ,020
TxC 48,951 1 48,951 ,153 ,697
TxH 2236,920 1 2236,920 7,010 ,010
CxH 27,800 1 27,800 ,087 ,769
TxCxH 140,536 1 140,536 ,440 ,509
Error 20743,155 65 319,125
Total 141375,000 73

4.5 CS2 Success of Novice Students Groups Depending on Instructional Tool

Used (Hypothesis 3)

The CS2 post-test scores from subgroups comprised of students who lack high-school experience in GUI-
application development and who have been unsuccessful in CS1 –namely, the “novices”- have been
compared with an independent samples T-test; the independent variable being the instructional tool used. The
results have been given in Table 4. According to the test, there is no significant difference between post-test
scores of novice groups depending on the instructional tool used t(27)=-.977, p>.005. Although, it is
interesting that the average scores for novices using BBVPL is relatively higher than novices using SBL

10th International Conference Mobile Learning 2014

153

www.manaraa.com

5. DISCUSSION

A review of literature shows that a blocks-based visual programming tool can be used in introductory
programming courses (Gestwicki and Ahmad 2011), that doing so may increase student motivation (Wolber
2011) and that while the said tool increases interest in programming in novice students, it may also help
maintain the motivation of experienced students (Karakus, Uludag et al. 2012). However, the scenario that
has been investigated with this study has yielded results that are partially on the contrary with these claims,
showing that as far as academic success is concerned, overall scores of students using a conventional syntax-
based language (SBL) for learning object oriented GUI-Application development have been found to be
significantly higher than those who learned by using the blocks-based visual programming language
(BBVPL). It should be noted that all students in the scenario had previously completed a CS1 course where
they were educated in structured programming concepts by using a syntax-based language (C#) for console-
application development. This result may show that students who got accustomed to developing applications
using a certain programming language/environment had difficulties adapting to a new and radical
language/environment. It is believed that it may be useful to investigate the reasons of such a probable
problem in adaptation. On the other hand, one reason that may have negatively affected the success of
students who used the reference BBVPL, namely the MIT App Inventor for Android, is the fact that the said
programming environment is still in a beta development stage, which suggests usability problems. Informal
feedback from students received after the research application has finished; revealed that students found App
Inventor to be rather slow and problematic compared to an IDE they previously used. Whereas, other issues
such as requirement for constant Internet connection, lack of simple features such as copy/paste at
components level and various bugs have all led several students to think that working with App Inventor was
a “waste of time”. In his study, Bhagi had also underlined several shortcomings of the App Inventor platform
in terms of mobile game development (Bhagi 2012). It should therefore always be kept in mind in further
research that MIT App Inventor is still indeed at beta development stage.

Another research finding indicates that; in addition to the programming language of choice, prior success
in a structured programming undergraduate course (CS1), and high-school experience in object-oriented GUI
application development are all factors that have significant main-effects upon object oriented GUI
application development (CS2) success at undergraduate level. This result complies with studies in the
current literature which claim that high school programming education positively effects success in
undergraduate programming education (Hagan and Markham 2000, Wilson and Shrock 2001, Holden and
Weeden 2003) and studies that claim existing knowledge in structured/procedural programming approaches
positively effect success in object-oriented programming education (Sharp and Griffyth 1999). A two way
interaction exists between effects upon CS2 success of ,the programming language of choice and high-school
experience in object-oriented GUI application development. While students with high-school experience in
GUI-app development do better in CS2 using the SBL; those without high-school experience do better in
CS2 using the BBVPL. This clearly shows that, the effect of the instructional tool (programming language of
choice) upon students’ CS2 success is influenced by long term (high school) experience; which brings an
explanation to the result observed at the testing of Hypothesis 1. In that, the fact that CS2 success among the
experimental and control groups seems to be higher in the control group who used the SBL, may be
specifically due to students in possession of long-term, high school experience in GUI-app development have
failed to adapt to the use of BBVPL.

From factors that impact CS2 success, the lack of significant relationship between success in the previous
undergraduate CS1 course, which involved education in structured programming concepts, and high-school
experience in object-oriented GUI-application development; could be associated with the content of the
object-oriented GUI application development courses received by students during high-school. At this point,
it could be possible that the vocational high schools that taught object-oriented GUI application development
may have followed an objects-first approach in teaching programming to their novice students; which may
have resulted in the students being captivated with the graphics nature of applications and failing to improve
their more basic and abstract programming skills associated with structured programming, namely, simple
algorithm development, working with conditionals, loops, etc. This is supported by several studies in the
literature stating that as programming education shifts from procedural to visual and object-oriented,
students’ skills in algorithm development and code generation get weaker and their academic success
therefore drops (Beaubouef and Mason 2005, Reges 2006).

ISBN: 978-989-8704-02-3 © 2014 IADIS

154

www.manaraa.com

The fact that there is no role of the CS1 success factor in the impact of programming language of choice
upon CS2 success, clearly shows how important a CS1 course that prioritizes teaching structured
programming concepts is for programming education. Since, it can be inferred that, students who have been
successful at a course that encompasses structured programming concepts (CS1) are prone to be successful in
an object-oriented GUI-application development course (CS2) regardless of which programming language is
used as an instructional medium. It can be said that, no matter how GUI-application development is found to
be more interesting and relevant to real-world by students; a structured programming course dealing with
more abstract concepts as a first-step in programming education could be more viable.

The research also showed that, the so-called “novice” students, who did not have prior programming

experience from high school and who were found to be relatively unsuccessful at the structured programming
education with a syntax-based language at the CS1 course; have done better in CS2 using the BBVPL (MIT
App Inventor for Android) than using the SBL, although the difference was not statistically significant. MIT
App Inventor for Android therefore still has a potential to be used as a tool for introducing novices to
programming or reclaiming students who perhaps failed to adjust themselves to programming due to
abstraction concerns or difficulties in coding and syntax-use. This result complies with studies in the
literature that claim MIT App Inventor could be a useful tool for introducing novices to programming
(Spertus, Chang et al. 2010, Uludag, Karakus et al. 2011).

6. CONCLUSION

Although it is claimed by researchers that developing applications for use on smart mobile devices could
positively influence academic success in programming courses due to an increase in student motivation; it is
suggested by this research that this claim can be influenced by various factors. It is also suggested that
success in a previous course that teaches structured programming concepts (CS1) is an important factor in
achieving success in an object-oriented GUI application development course (CS2), to the point that; even if
the IDE and programming language used in CS1 is changed at CS2. With the motivation effect it brings
about and the blocks-based concept, MIT App Inventor may have a potential to be used as a tool for
introducing novices -who have no prior experience in the field- to computer programming. Additionally, it
can also be used for reclaiming students who could not adjust to conventional syntax-based programming
education. On the other hand, students who possess a long-term experience in object-oriented GUI-
application development –possibly acquired at a vocational high school- prefer to continue education in the
syntax-based language for developing applications targeting the desktop PC-that which they are accustomed
to-, rather than in MIT App Inventor. One reason for this, could be the the usability concerns involving MIT
App Inventor, which is still at a beta development stage.

ACKNOWLEDGEMENTS

The study was carried out as part of a Master’s Degree in the Computer Education and Instructional
Technologies Department at Marmara University Institute of Educational Sciences,. It has been funded by
Marmara University Research Projects Board as research project number EGT-C-YLP-150513-0211.

REFERENCES

Ay, O.(2011). Mantıksal Hata Örneklerinin Kullanıldığı Programlama Eğitiminde Uygulanan Öğretim Yöntemleri Ve

Öğrenci Deneyimlerinin Akademik Başarıya Etkisi, Marmara Üniversitesi Eğitim Bilimleri Enstitüsü Yüksek lisans
Tezi.

Beaubouef, T. and J. Mason (2005). "Why the high attrition rate for computer science students: some thoughts and
observations." SIGCSE Bull. 37(2): 103-106.

Bhagi, A. (2012). Android Game Development with AppInventor. Department of Electrical Engineering and Computer
Science. Massachusetts, USA, Massachusetts Institute of Technology. Master of Engineering in Electrical
Engineering and Computer Science: 94.

10th International Conference Mobile Learning 2014

155

www.manaraa.com

Dvorak, J. D. and K. Buchanan (2002). Using Technology To Create and Enhance Collaborative Learning, Association
for the Advancement of Computing in Education (AACE), P.O. Box 3728, Norfolk, VA 23514. Tel: 757-623-7588;
e-mail: info@aace.org; Web site: http://www.aace.org/DL/.

Gestwicki, P. and K. Ahmad (2011). "App inventor for Android with studio-based learning." J. Comput. Sci. Coll. 27(1):
55-63.

Hagan, D. and S. Markham (2000). "Does it help to have some programming experience before beginning a computing
degree program?" SIGCSE Bull. 32(3): 25-28.

Holden, E. and E. Weeden (2003). The impact of prior experience in an information technology programming course
sequence. Proceedings of the 4th conference on Information technology curriculum. Lafayette, Indiana, USA, ACM:
41-46.

Horn, M. S. and R. J. K. Jacob (2006). Tangible programming in the classroom: a practical approach. CHI '06 Extended
Abstracts on Human Factors in Computing Systems. Montreal, Quebec, Canada, ACM: 869-874.

Horn, M. S. and R. J. K. Jacob (2007). Designing tangible programming languages for classroom use. Proceedings of the
1st international conference on Tangible and embedded interaction. Baton Rouge, Louisiana, ACM: 159-162.

Karakus, M., et al. (2012). Teaching computing and programming fundamentals via App Inventor for Android.
Information Technology Based Higher Education and Training (ITHET), 2012 International Conference on.

Kinnunen, P. and Malmi, L. (2008). CS minors in a CS1 course. In Proceeding of the Fourth international Workshop on

Computing Education Research (Sydney, Australia, September 06 - 07, 2008). ICER '08. ACM, New York, NY, 79-
90.

Kurkovsky, S. (2009). "Engaging students through mobile game development." SIGCSE Bull. 41(1): 44-48.
Mahmoud, Q. H. and A. Dyer (2007). Integrating BlackBerry wireless devices into computer programming and literacy

courses. Proceedings of the 45th annual southeast regional conference. Winston-Salem, North Carolina, ACM: 495-
500.

Mccracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B., Laxer, C., Thomas, L., Utting, I. ve
Wilusz, T. (2001). A multi-national, multi-institutional study of assessment of programming skills of first-year cs
students. In ITiCSE-WGR '01: Working group reports from ITiCSE on Innovation and technology in computer
science education, pages 125-180, New York, NY, USA. ACM Press.

McNerney, T. (2004). "From turtles to Tangible Programming Bricks: explorations in physical language design."
Personal and Ubiquitous Computing 8(5): 326-337.

Mohamad, S. N. H., et al. (2011). Principles and dynamics of block-based programming approach. Computers &
Informatics (ISCI), 2011 IEEE Symposium on.

Papert, S. and I. Harel (1991). "Situating constructionism." Constructionism: 1-11.
Purcell, K. (2011). "Half of adult cell phone owners have apps on their phones." Pew Research Center's Internet &

American Life Project. Accessed January 9: 2012.
Rau, P.-L. P., et al. (2008). "Using mobile communication technology in high school education: Motivation, pressure, and

learning performance." Computers & Education 50(1): 1-22.
Reges, S. (2006). "Back to basics in CS1 and CS2." SIGCSE Bull. 38(1): 293-297.
Robins, A., Rountree, J., ve Rountree, N. (2003). Learning and teaching programming: A review and discussion.

Computer Science Education, 13(2):137-172.
Sharp, H. and J. Griffyth (1999). "The Effect of Previous Software Development Experience on Understanding the

Object-Oriented Paradigm." Journal of Computers in Mathematics and Science Teaching 18(3): 245-265.
Soloway, E., Ehrlich, K., Bonar, J. and Greenspan, J. (1983). What do novice know about programming? In B.

Shneiderman and A. Badre (eds), Directions in Human-Computer Interactions, Ablex, Norwood, NJ, 27-54.
Spertus, E., et al. (2010). Novel approaches to CS 0 with app inventor for android. Proceedings of the 41st ACM

technical symposium on Computer science education. Milwaukee, Wisconsin, USA, ACM: 325-326.
Tillmann, N., et al. (2012). The future of teaching programming is on mobile devices. Proceedings of the 17th ACM

annual conference on Innovation and technology in computer science education. Haifa, Israel, ACM: 156-161.
Uludag, S., et al. (2011). Implementing IT0/CS0 with scratch, app inventor forandroid, and lego mindstorms. Proceedings

of the 2011 conference on Information technology education. West Point, New York, USA, ACM: 183-190.
Wang, D., et al. (2011). T-Maze: a tangible programming tool for children. Proceedings of the 10th International

Conference on Interaction Design and Children. Ann Arbor, Michigan, ACM: 127-135.
Wilson, B. C. and S. Shrock (2001). "Contributing to success in an introductory computer science course: a study of

twelve factors." SIGCSE Bull. 33(1): 184-188.
Wolber, D. (2011). App inventor and real-world motivation. Proceedings of the 42nd ACM technical symposium on

Computer science education. Dallas, TX, USA, ACM: 601-606.
Wyeth, P. and H. C. Purchase (2000). Programming without a computer: a new interface for children under eight. User

Interface Conference, 2000. AUIC 2000. First Australasian.

ISBN: 978-989-8704-02-3 © 2014 IADIS

156

http://www.aace.org/DL/

	ML 2014 - Cover
	ML 2014
	COPYRIGHT
	TABLE OF CONTENTS
	FOREWORD
	PROGRAM COMMITTEE
	KEYNOTE LECTURE
	PANEL SESSION
	FULL PAPERS
	SUPPORTING TEACHERS TO DESIGN AND USE MOBILE COLLABORATIVE LEARNING GAMES
	EBOOKS AS PDF FILES, IN EPUB FORMAT OR ASINTERACTIVE IBOOKS? DIGITAL BOOKS IN PHYSICS LESSONS OF SECONDARY EDUCATION
	MOBILE LEARNING AND EARLY AGE MATHEMATICS
	M-LEARNING – ON PATH TO INTEGRATION WITH ORGANISATION SYSTEMS
	IMPROVING HISTORY LEARNING THROUGH CULTURAL HERITAGE, LOCAL HISTORY AND TECHNOLOGY
	INTRIGUE AT THE MUSEUM: FACILITATING ENGAGEMENT AND LEARNING THROUGH A LOCATION-BASED MOBILE GAME
	MOBILE-BASED CHATTING FOR MEANING NEGOTIATION IN FOREIGN LANGUAGE LEARNING
	STUDENT PREFERENCES FOR M-LEARNING APPLICATION CHARACTERISTICS
	LEARNING AND TEACHING WITH MOBILE DEVICES AN APPROACH IN SECONDARY EDUCATION IN GHANA
	CROSS-CULTURAL DESIGN OF MOBILE MATHEMATICS LEARNING SERVICE FOR SOUTH AFRICAN SCHOOLS
	MOBILE LEARNING AND ACHIEVEMENT GOAL ORIENTATION PROFILES
	A REVIEW OF INTEGRATING MOBILE PHONES FOR LANGUAGE LEARNING
	OVERLAPPING CHAT’S ACCESSIBILITY REQUIREMENTS BETWEEN STUDENTS WITH AND WITHOUT DISABILITIES DUE TO THE MOBILE LIMITATIONS
	UML Quiz: AUTOMATIC CONVERSION OF WEB-BASED E-LEARNING CONTENT IN MOBILE APPLICATIONS
	PEDAGOGICAL APPLICATIONS OF SMARTPHONE INTEGRATION IN TEACHING - LECTURERS', STUDENTS' & PUPILS' PERSPECTIVES
	MOOC TO GO
	STRATEGIES AND CHALLENGES IN IPAD INITIATIVE
	BLENDING CLASSROOM TEACHING AND LEARNING WITH QR CODES
	PROGRAMMING EDUCATION WITH A BLOCKS-BASED VISUAL LANGUAGE FOR MOBILE APPLICATION DEVELOPMENT
	SHIFTING CONTEXTS: INVESTIGATING THE ROLE OFCONTEXT IN THE USE OF UBIQUITOUS COMPUTING FOR DESIGN-BASED LEARNING
	EVALUATION FRAMEWORK FOR DEPENDABLE MOBILE LEARNING SCENARIOS
	INITIAL EVALUATION OF A MOBILE SCAFFOLDING APPLICATION THAT SEEKS TO SUPPORT NOVICE LEARNERS OF PROGRAMMING
	DEFINING A SET OF ARCHITECTURAL REQUIREMENTSFOR SERVICE-ORIENTED MOBILE LEARNING ENVIRONMENTS
	PORTABILITY AND USABILITY OF OPEN EDUCATIONAL RESOURCES ON MOBILE DEVICES: A STUDY IN THE CONTEXT OF BRAZILIAN EDUCATIONAL PORTALS AND ANDROID-BASED DEVICES
	EVALUATING QR CODE CASE STUDIES USING A MOBILE LEARNING FRAMEWORK
	DEVELOPING A MOBILE SOCIAL MEDIA FRAMEWORK FOR CREATIVE PEDAGOGIES
	FACTORS AFFECTING M-LEARNERS’ COURSE SATISFACTION AND LEARNING PERSISTENCE
	A FRAMEWORK TO SUPPORT MOBILE LEARNING IN MULTILINGUAL ENVIRONMENTS

	SHORT PAPERS
	MOBILE TECHNOLOGY INTEGRATED PEDAGOGICALMODEL
	REPRESENTATIONS OF AN INCIDENTAL LEARNING FRAMEWORK TO SUPPORT MOBILE LEARNING
	USING MOBILE APPS AND SOCIAL MEDIA FOR ONLINE LEARNER-GENERATED CONTENT
	TWEETING AS A TOOL FOR LEARNING SCIENCE:THE CREDIBILITY OF STUDENT-PRODUCEDKNOWLEDGE CONTENT IN EDUCATIONAL CONTEXTS
	WHAT MOBILE LEARNING AND WORKING REMOTELY CAN LEARN FROM EACH OTHER
	IN-TIME ON-PLACE LEARNING
	M-LEARNING AND TECHNOLOGICAL LITERACY: ANALYZING BENEFITS FOR APPRENTICESHIP
	DESIGNING A SITE TO EMBED AND TO INTERACT WITH WOLFRAM ALPHA WIDGETS IN MATH ANDSCIENCES COURSES
	AN ENVIRONMENT FOR MOBILE EXPERIENTIAL LEARNING
	SUPPORTING SITUATED LEARNING BASED ON QRCODES WITH ETIQUETAR APP: A PILOT STUDY
	RAISING AWARENESS OF CYBERCRIME - THE USE OF EDUCATION AS A MEANS OF PREVENTION AND PROTECTION
	MOBILE GAME FOR LEARNING BACTERIOLOGY
	THE THEORY PAPER:WHAT IS THE FUTURE OF MOBILE LEARNING?
	RAPID PROTOTYPING OF MOBILE LEARNING GAMES
	PREPARING LESSONS, EXERCISES AND TESTS FOR M-LEARNING OF IT FUNDAMENTALS
	THE MOTIVATING POWER OF SOCIAL OBLIGATION: AN INVESTIGATION INTO THE PEDAGOGICAL AFFORDANCES OF MOBILE LEARNING INTEGRATED WITH FACEBOOK
	WHEN EVERYONE IS A PROBE,EVERYONE IS A LEARNER
	MOBILE LEARNING AND ART MUSEUMS: A CASE STUDY OF A NEW ART INTERPRETATION APPROACH FOR VISITOR ENGAGEMENT THROUGH MOBILE MEDIA
	LEARNER CENTRIC IN M-LEARNING: INTEGRATION OF SECURITY, DEPENDABILITY AND TRUST
	M-LEARNING PILOT AT SOFIA UNIVERSITY
	A MOBILE SERVICE ORIENTED MULTIPLE OBJECT TRACKING AUGMENTED REALITY ARCHITECTURE FOR EDUCATION AND LEARNING EXPERIENCES

	REFLECTION PAPERS
	LEARNERS’ ENSEMBLE BASED SECURITY CONCEPTUAL MODEL FOR M-LEARNING SYSTEM IN MALAYSIAN HIGHER LEARNING INSTITUTION
	SUPPORTING THE M-LEARNING BASED KNOWLEDGE TRANSFER IN UNIVERSITY EDUCATION AND CORPORATE SECTOR

	POSTER
	THE FUTURE OF UBIQUITOUS ELEARNING

	AUTHOR INDEX

